Incorporating Machine Vision into an Industrial Robotics Course

Dr. John R. Wright, Jr., CSTM, F.ATMAE
Mr. Andrew C. Spisak, CTM
Mr. Dietrich A. Gehron
Mr. Nathan J. Kury

Overview

- The presentation will illustrate how machine vision may be incorporated into a traditional industrial robotics university course of study.
- The presenters will provide curriculum, sample exercises, and Youtube video modules to assist faculty interested in modernizing their robotics course through the incorporation of machine vision.

NEED

- Today's applied engineering students need to be exposed to industrial robots outfitted with modern machine vision technology.
- Controls/automation engineers will rely on these technologies as they automate our manufacturing processes in order to compete in the global marketplace.

Industrial Robots and Robotic Vision

According to the Association for Advancing Automation's Annual report for 2017

- North American had sales of \$1.9 billion
- Machine vision grew 14% to \$2.6 billion
- 2018 sales are expected to grow

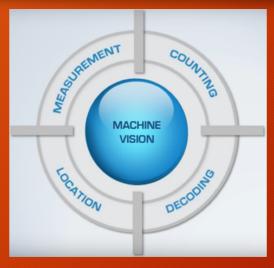
https://global.epson.com/newsroom/2018/news 20180522 2.htm

Active vs. Passive Compliance

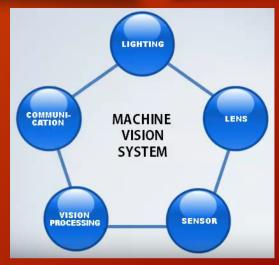
Passive - The robot end effector will move to a predetermined position every time.

https://www.youtube.com/watch?v=oXQxM8fE3c0

Active - The robot end effector will move to a different position every time based on the parts location.



https://www.youtube.com/watch?v=aK2kXyfMPtY


New Machine Vision Curriculum

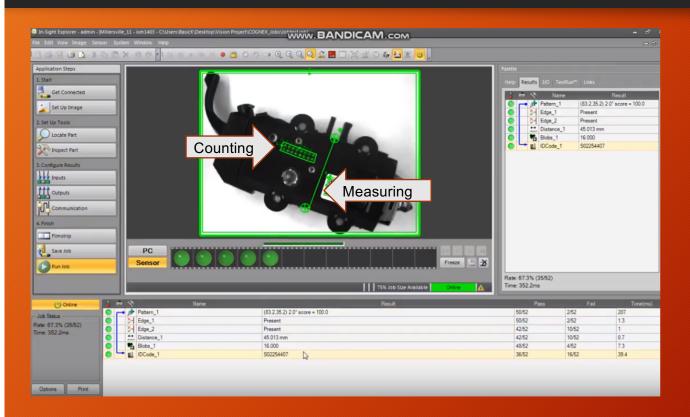
- Machine Vision
 - Programming Techniques
 - Measurement
 - Counting
 - Decoding
 - Location
- Benefits
 - Reduce defects
 - Increase yield
 - · Track and trace
 - · Comply with regulations
- Fundamental of Lighting
 - Illumination Principles
 - Types/Sources of lighting
 - Lighting variants and accessories

https://www.youtube.com/watch?v=TTnho9-i6dl

https://www.youtube.com/watch?v=aq4EHRHVOdc

http://sites.millersville.edu/jwright/425%20Syllabus%20sp%202018.pdf

MU's Industrial Robotics - Laboratory Exercises


- Lab 1 MELFA-Basic V. Programming Basics (Teaching Points & Manipulating Speed)
- Lab 2 MELFA-Basic V. Programming Basics (Linear and Circular Motion Interpolation)
- Lab 3 MELFA-Basic V. Programming Basics (Gripper Control, For/Next Loops, Subroutines)
- Lab 4 MELFA-Basic V. Programming Basics (Palletizing)
- Lab 5 End-of-Arm Tooling (Classifications, Gripper Force Calculations, & Applications)
 - Machine Vision YouTube Overview Tutorial
- Lab 6 Cognex In-Sight (Measurement & Counting Tools)
- Lab 7 Cognex In-Sight (Decoding & Location Tools)
 - Mitsubishi/Cognex Interface YouTube and Written Tutorials
- Lab 8 Cognex & Mitsubishi Interface (Object Recognition & Moves)
- Lab 9 Object Tracking (Active Compliance)
- Lab 10 Cost Justification (Payback Period, ROI, FV & NPW)

Measurement & Counting Lab

Machine Visio

Lab 6 – Cognex In-Sight (Measurement & Counting Tools)

ITEC 425, Industrial Robotic Systems Mr. Michael Wiles, December 2017 Edited by Dr. John Wright, January 2018

Department of Applied Engineering, Safety & Technology

Objectives:

Upon conclusion of this activity each student will be able to:

- Identify the advantages and disadvantages of the measurement and counting methods associated with using COGNEX In-Sight Micro-Vision System for quality control amplications
- Test an actual part by moving it within the camera's view and observe the pass or fail status as the camera image is compared against the running Job file.

Questions:

- 1. Define the function of measurement tools.
- 2. Define the function of counting tools.
- 3. For each technique list two possible applications where they may be used.
- 4. Compare and contrast measurement and counting tool functions.

35

Measurement & Counting Lab

PART 1 (Measurement Tools)

This activity introduces basic measurement tools utilized by the COGNEX In-Sight

<u>EasyBuilder</u> software. Measurement tools are used to measure distances, diameters, angles and
area of features in the image.

Directions:

Using the skills developed in the introductory vision activity select an available object that fits within the camera view for identification. After receiving instructor approval, create a basic Job locating the part and then, using one of the measurement tools, inspect a distinct feature of the object. Reposition the object into different orientations and observe when the Job recognizes a pass or fail.

*Refer to "http://sites.millersville.edu/jwright/" for video tutorial "Machine Vision— Measurement" for assistance.

Sketch the object and features used.

Instructor Initials

PART 2 (Counting Tools)

This exercise introduces basic counting tools utilized by the COGNEX In-Sight

<u>EasyBuilder</u> software. Counting tools are used to count types of features in the image.

Directions:

Using the skills developed in the introductory vision activity select an available object that fits within the camera view for identification. After receiving instructor approval, create a basic Job locating the part and then, using one of the counting tools, inspect a distinct feature of the object. Reposition the object into different orientations and observe when the Job recognizes a pass or fail.

*Refer to "http://sites.millersville.edu/jwright/" for video tutorial "Machine Vision – Counting"

Sketch the object and features used.

Instructor Initials

36

Barcode Decoding & Location Lab

Machine Vision
Lab 7 - Cognex In-Sight (Decoding & Location Tools)
ITEC 425, Industrial Robotic Systems
Mr. Michael Wiles, December 2017
Edited by Dr. John Wright, January 2018
Department of Applied Engineering, Safety & Technology

Upon conclusion of this activity each student will be able to:

- Identify the advantages and disadvantages of the decoding and location methods associated with using COGNEX In-Sight Micro-Vision System for quality control amplications.
- Test an actual part by moving it within the camera's view and observe the pass or fail status as the camera image is compared against the running Job file.

Questions:

- 1. Define the function of identification (decoding) tools.
- 2. Define the function of presence/absence (location) tools.
- 3. For each technique list two possible applications where they may be used.
- 4. Compare and contrast identification (decoding) and presence/absence (location) tool

3

https://www.voutube.com/watch?v=dC_kCNZLVwU

Barcode Decoding & Location Lab

PART 1 (Decoding Tools)

This laboratory experiment introduces basic decoding tools utilized by the COGNEX In-Sight EasyBuilder software. Decoding tools are used to identify and verify one-dimensional (1D) and two-dimensional (2D) codes and symbols, alphanumeric text, pattern features and colors in the image.

Directions:

Using the skills developed in the introductory vision activity select an available object that fits within the camera view for identification. After receiving instructor approval, create a basic Job locating the part and then, using one of the Identification/Decoding tools, inspect a distinct feature of the object. Reposition the object into different orientations and observe when the Job recognizes a pass or fail.

*Refer to "http://sites.millersville.edu/jwright/" for video tutorial "Machine Vision - Decoding" for assistance.

Sketch the object and features used.

Instructor Initials

PART 2 (Location Tools)

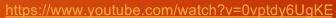
This laboratory experiment introduces basic location tools utilized by the COGNEX In-Sight EasyBuilder software. Location tools are used to qualify whether or not there is a feature, in a particular relative orientation, present in the image.

Directions

Using the skills developed in the introductory vision activity select an available object that fits within the camera view for identification. After receiving instructor approval, create a basic Job locating the part and then, using one of the location tools, inspect a distinct feature of the object. Reposition the object into different orientations and observe when the Job recognizes a pass or fail.

*Refer to "http://sites.millersville.edu/jwright/" for video tutorial "Machine Vision - Location" for assistance.

Sketch the object and features used.


Instructor Initials

4

Object Recognition & Moves Lab

https://www.youtube.com/watch?v=rjqi5ffOeY0

Object Tracking Lab

- Active compliance object tracking
- Active pick
- Passive place

https://www.youtube.com/watch?v=faTmwMiJNao

Results & Recommendations

- Experience as a Student
 - Ups and Downs
 - Learning the language
 - Networking the Devices
 - Computer Science vs Real World

Summary

- Today's applied engineering students need to be exposed to industrial robots outfitted with modern machine vision technology.
- Controls/automation engineers will rely on these technologies as they automate our manufacturing processes in order to compete in the global marketplace.
- Once students master the setup/networking of the devices, they
 quickly grasp and enjoy the use of machine vision technology
 which now allows them to design much more intelligent
 automated cells.

Contact Information

All presentations can be found on

http://sites.millersville.edu/jwright/

Dr. John R. Wright, Jr.

• John.Wright@millersville.edu

Mr. Dietrich A. Gehron

• Dietrichgehron82@gmail.com

Mr. Nathan J. Kury

N8Kury@Gmail.com

Mr. Andrew C. Spisak

• Spisak.andrew@yahoo.com